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Abstract

Hexagonal space groups, i.e. those with an hP lattice,
are classified from the geometric-unit viewpoint by
considering hexagonal crystal structures as combina-
tions and permutations of some basic hexagonal
prisms. Geometric units are the Dirichlet domains of
the Wyckoff positions with the highest point-group
symmetry in the space group. In this classification,
there are six types of hexagonal space groups. Type
hl consists of two independent geometric units of
the same symmetry per crystallographic cell; in type
h2, the two units are identical, but differently orien-
ted. Type h3 has six independent geometric units,
again of the same point-group symmetry, but the six
units can be made up of three pairs, each consisting
of two identical units, thus giving rise to type h4.
There are subclasses in types h1 and h3. Centers of
geometric units in hl(a) and h3(a) are uniquely
defined by intersections of point-group symmetry ele-
ments, whereas those in h1(b) and h3(b) are not
because the space groups in these subtypes are hemi-
morphic. Therefore, the two units along the polar axis
may be combined as one. Type hS5 consists of three
units, each turned 120° from its neighbors owing to
the screw axis 3, 3,, 6, and 6,. Similarly, type h6 has
six units due to screw axes 6, and 65, and adjacent
units are 60° apart. Rhombohedral space groups show
two types of patterns: type rl has two independent,
and type r2 two identical, units. The h.c.p. and related
structures are used to demonstrate the application of
geometric units to crystal-structure descriptions.

Introduction

A recurring problem in finding a model for the sol-
ution of a crystal structure and its interpretation is

to identify some convenient units that, by easy sym-
metry operations, will enable the construction of the
entire structure. In this respect, asymmetric units,
topological units (Wells, 1977), crystal chemical units,
symmetry-related units (Kennard, Speakman &
Donnay, 1967), building units (Lima-de-Faria &
Figueiredo, 1976) and crystallographic cells have
been used. For cubic crystal structures, Chieh (1979)
suggested geometric units based on the construction
of polyhedra, a proposal which differs from the pre-
vious ones in that it deals mainly with the symmetrical
distribution of the atoms in the structure, rather than
their connectivity or framework. The classification
and description of cubic space groups in terms of
geometric units were later given by Chieh, Burzlaff
& Zimmermann (1982). The concept of geometric
units was extended to tetragonal space groups by
Chieh (1983), and some advantages were pointed out.

Applications of geometric units to cubic crystal
structures have been given in previous publications
(Chieh, 1980, 1982, 1983). Their application to the
solution of a crystal structure and its subsequent
interpretation was exemplified by the paper on anhy-
drous zinc bromide (Chieh & White, 1984). The pres-
ent paper deals with the hexagonal and rhombohedral
space groups.

Early work on the classification of cubic space
groups by geometric units was somewhat intuitive.
As more work on the theoretical aspects of space
groups developed (see Gubler, 1982; Fischer & Koch,
1983; Burzlaff & Zimmermann, 1980) it became
apparent that the classification follows the results of
Euclidean normalizers of space groups. The purpose
of geometric units is to divide a crystal structure into
polyhedral units that have the same shape, volume
and point-group symmetry.
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Dirichlet domains in hexagonal and
rhombohedral lattices

All hexagonal lattices are primitive hP, but when
hexagonal coordinate axes are used for a rhombohe-
dral lattice, the cell hR contains three lattice points.
If the rhombohedral coordinates are used, the cell is
primitive rP. In terms of geometric units, the rhom-
bohedral lattice is different from the hexagonal one.

In a rhombohedral lattice the Dirichlet (1850)
domains, which are sometimes referred to as Wigner—
Seitz (1933) cells, have two shapes depending on the
rhombohedral angle «, if we ignore the special cases
of @ =60 and 90°. Since geometric units are derived
from the Dirichlet domains of Wyckoff sites of the
highest symmetry in a space group, we shall explain
the variation in shape of the Dirichlet polyhedron as
the angle « varies. In the special case of a =60°, the
‘rhombohedral’ lattice is metrically a cubic F lattice.
Therefore the Dirichlet domain has the shape of a
rhombic dodecahedron. This well known polyhedron,
which was mentioned by Chieh (1983), is also related
to a special case of a tetragonal lattice. For 60 < a <
90°, the rhombic dodecahedron deforms along one
of the threefold axes, as shown in Fig. 1(a). For
a =90°, the lattice is pseudo-cubic P and metrically
the Dirichlet domain is a cube. For a > 90°, the neigh-
bor along the [111] axis becomes nearest, and the
planes between the lattice points in this direction will
take part in shaping the Dirichlet domain, as shown
in Fig. 1(b). This polyhedron can be derived from
the truncated octahedron by compressing it along a
threefold axis. At the other extreme, for @ = 120°, the
lattice is a hexagonal net. The Dirichlet domain for
a hexagonal lattice is a hexagonal prism as shown in
Fig. 1(c).

Geometric units in hexagonal and rhombohedral space
groups

The translations of any rhombohedral space group
generate a site 1/2, 1/2, 1/2 (the body center of the
rP cell), which has the same point-group symmetry
as the origin. The same groups, referred to the hR
cell, generate a site 0, 0, 1/2, which has the same
symmetry as in the corresponding hexagonal space
groups. Since there is no unique point in polar groups,
an equivalent origin of this type does not stand out,

(a) (b) (c)

Fig. 1. Dirichlet domains for {a) a rhombohedral lattice with
a<90°, (b) a rhombohedral lattice ‘with a>90°, and (c) a
hexagonal lattice.

GEOMETRIC UNITS IN HEXAGONAL AND RHOMBOHEDRAL SPACE GROUPS

but it is there. In space groups such as P312, P6,
P6m?2 etc., sites 1/3,2/3, 0 and 2/3, 1/3, 0 also have
the same point-group symmetry as the origin, and
these sites, together with those halfway along c, are
very special Wyckoff positions whose Dirichlet
domains may serve as convenient geometric units.
The geometric units for hexagonal and rhombohe-
dral space groups bear certain similarity to those of
the tetragonal system. The analysis of the hexagonal
space groups results in five categories (a, b, ¢, d and
ein Fig. 2). For the (a) category, the Dirichlet domain
of the hexagonal lattice is divided into two geometric
units by a plane half way in the {001] direction. The
units for the (c) category are similar to those of (a),
but they have 1/3 of the volume of the Dirichlet
domain of the lattice, and units in the (d) category
have 1/6 of the volume (shortened along the ¢ direc-
tion). Units in the (b) category have 1/6 of the volume
of the cell, as their area in the ab plane is 1/3 of the
mesh (Fig. 3) in addition to the division of ¢ by 2.
In all categories, the overall shape of the geometric
units remains as a hexagonal prism. In the rhombohe-

(d) (e)

Fig. 2. Geometric units and packing patterns for hexagonal space
groups (a, b, ¢ and d) and rhombohedral space groups (e).

Fig. 3. Relationship between geometric unit in category (b) and
crystallozraphic cell.
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Table 1. Classification of hexagonal space groups by packing pattern of geometric units
Type, no. of Space-group number
pattern unit, Space-group symbol
orientation Wyckoff positions as geometric unit center, site symmetry
hi(a) B 147 150 162 164 175 177 189 191
A P3 P321 P3lm P3m| P6/m P622 P62m P6/mmm
A: I(a)3. 1(a) 32. 1(a)3.m 1(a)3m. 1(a) 6/ m.. 1(a) 622 1(a)62m 1(a) 6/ mmm
A: 1(b)3.. 1(b)32. 1(b)3.m 1(b)3m. 1(b)6/m.. 1(b) 622 1{b)62m 6/ mmm
h1(b) 157 168 183
P3lm Pé6 P6mm
AB: 1(a)3.m 1(a)é6.. {(a)6mm
h2 A’ 159 163 165 173 176 182 184
A P3lc P3lc P3cl P6, P63/ m P64,22 Pécc
A: 2(a)3.. 2(b) 3. 2(b) 3.. 2(a)3.. 2(b)3.. 2(a) 32. 2(a)6..
" m* m* m 6 6 6 m
185 186 190 192
P6ycm P6ymc P62c P6/ mcc
A: 2(a)3.m 2(a)3m. 2(a) 32. 2(b)6/m..
" 6 6 m* m
193 194
P63/ mcm P65/ mmc
A: 2(b)3.m 2(a)3m.
" 6 6
h3(a) BDF 149 174 187
ACE P312 P6 Pém2
A: 1(a) 3.2 1(a)6.. ](a)?mZ
B: 1(h)3.2 1(b) 6. 1(b) 6m2
C: 1(c)3.2 1(c)6.. 1(c) 6m2
D: 1(d)3.2 1(d)6.. 1(d) §m2
E: 1(e)3.2 1(e)6.. I(e) 6m2
F: 1(f) 3.2 1(f) 6.. 1(f) 6m2
h3(b) 143 156
P3 Piml
AB: 1(a)3.. I(a)3m.
CD: 1(b) 3.. 1(b)3m.
EF: 1(¢) 3. 1(c) 3m.
h4 A'B'C’ 158 188
ABC P3cl Péc2 .
A: 2(a)3.. 2(a)3.2 or 2(b)(l..
B:  2(b)3.. 2(c)3.2 2(d)6..
C: 2(c) 3. 2(e) 3.2 2(f)6..
LN m* m¥
hs Al 144 145 151 152 171 172 180 181
A? P3, P3, P3,12 P3,21 Pé6, P6, P6,22 P6,22
A A: 3(a)l 3(a)l 3(a)..2 3(a).2. 3(a)2.. 3(a)2.. 3(a) 222 3(a)222
153 154
P3,12 P3,21
A 3a).2 3(a).2.
hé A® 169 170 178 179
A* P6, P6, P6,22 P6,22
A A 6(a) | 6(a) 1 6(a).2. 6(a) 2.
AZ
Al
A

Orientation notations 6, m, m* represent six-fold rotation axis, mirror perpendicular to a and mirror perpendicular to a*, respectively. In that order,
the first one will be given in cases where all three or any two are present. Superscript to pattern letter A, in types hS and h6, refers to number of 60° rotations.

dral case (Fig. 2e), the units generally have the shape
of a dodecahedron or distorted truncated octahedron,
but in the special case where « =90° the units are
metric cubes. The units shown in the figure are cubes
for clarity, but the packing is perhaps easier to under-
stand if we use the hexagonal prisms in a staggered
arrangement (shown in the inset). The transformation
of shapes has been discussed in connection with the
geometric units in the tetragonal system (Chieh,
1983). All categories, except (¢) and (d), have two
types.

Classification of hexagonal and rhombohedral
space groups by geometric units

In the classification of hexagonal and rhombohedral
space groups (Tables 1 and 2), the symbols of Interna-
tional Tables for Crystallography (1983) are used. The
method of classification is similar to that applied to
tetragonal space groups (Chieh, 1983).

Like the tetragonal system, there are hemimorphic
hexagonal space groups for which the origins are not
uniquely defined because there are no symmetry axes
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Table 2. Geometric units in rhombohedral space groups for crystals of many space groups (see Table 1 for

Space-group number
Space-group symbol
Wyckoff positions as geometric unit
center, site symmetry

Type, no. of pattern
unit, orientation

rl B 148 155 166
A R3 R32 R3m_
A: 1(a)3 1(a) 32 I(a)3m
B: 1(b) 3. 1(b) 32 1(b)3m
ri(b) 146 160
R3 R3m
AB: 1(a)3 I(a)3m
r2 A’ 161 167
A R3c R3c
A: 2(a) 3. 2(b)3
" m* 6

See note in Table | for meaning of symbols.

intersecting at any point. The two units that could
have been used for space groups that have a unique
point as their origin may be combined along the [001]
direction, and be considered as a single unit. These
space groups are placed in subtypes h1(b) and h3(b)
(Table 1).

When units A and B are combined, they actually
form a one-unit period in the [001] direction. For
hexagonal space groups, the axes 6, 6, (65), 6, (6,)
and 6, give rise to the possibility of having one, six,
three and two geometric units, respectively, in one
[001] period. Type h5 has the sequence AA’A* (> and
* refer to 67 and 6* operations), and all space groups
in this type contain one of the screw axes 3, 3,, 6,,
6,. Space groups P6,, P6;, P6,22 and P6522 are
classified under type h6, with six geometric units per
cell, in a manner similar to that of type h5. The
point-group symmetries of the geometric units are |
or .2. When the geometric unit has symmetry 1, it is
also the asymmetric unit. Symmetry in the geometric
unit reduces the volume of the asymmetric unit to
1/2, 1/3, 1/6 or 1/12 that of the geometric unit.

There are two independent units A and B for types
h1(a) and h3(a) stacked in the [001] direction,
whereas both units for space groups in types h2 and
h4 are the same. They are differently oriented, and
thus the representations such as A and A’ are used.
The prime indicates one of the following symmetry
operations: repeated 60° rotations (' = 6"**), reflec-
tion in a mirror perpendicularto a ("= m), and reflec-
tion in a mirror perpendicular to a* ('= m*).

Discussion

A geometric unit in a crystal structure is a building
block possessing point-group symmetry of the Wyck-
off site which serves as its center. Such units in crystal
structures usually consist of simple easily recogniz-
able polyhedral arrangements of atoms, molecules or
ions. There are common arrangements of these units

examples). Thus the analysis of geometric units for
the abstract space groups is of fundamental import-
ance for the study of relationships between crystal
structures, especially in the aspect of symmetrical
distribution of atoms. For ease of application, adja-
cent units may be divided in such a way that they
have bumps and craters fitting into each other, but
the overall arrangement of the units remains the same.

The classification, in which most geometric units
have non-trivial crystallographic point-group sym-
metry, shows that the description of space groups by
geometric units is applicable not only to symmorphic
groups (ie those generated by combining point
groups with Bravais lattices), but also to nonsymmor-
phic groups. In retrospect, had a type with four units
in the [001] direction period been added to the classifi-
cation of tetragonal space groups (Chieh, 1983), no
geometric units in that system would have sections
of screw axes 4, or 4,.

If oriented symbols such as 3m. and 3.m are used
to differentiate symmetry directions, the descriptions
using geometric-unit patterns for the space groups
are unique, and there is a one-to-one correspondence
between the descriptions and the space groups. The
symbols used in this paper are those given by Donnay
& Turrell (1974). They have been adopted by Interna-
tional Tables for Crystallography (1983). Enantiomor-
phic space groups with 6,, 6, etc. are distinguished
by the handed screws, these must be employed in
order to distinguish their stacking patterns. Although
symbols suchas 6™' and 6' could have been employed,
no effort has been made to distinguish them at this
point in time.

Although the classification of space groups by
geometric units follows the principle of Cheshire
groups (Hirshfeld, 1968; Fischer & Koch, 1983), there
is a minor difference in that the latter deals with only
the symmetry elements whereas the former includes
the metric geometric properties. Let us make a few
comparisons between the classification of space
groups by geometric units and that by Cheshire
groups. In simple terms, the Cheshire group is the
symmetry group of the symmetry elements of the
space group. Two independent sites, such as 1(a) 0,
0,0 and 1(b) 0, 0, 1/2 in P6/m, are not equivalent
from a geometry viewpoint but are equivalent from
the symmetry viewpoint; both have point-group sym-
metry 6/ m. Similarly, equivalent sites 2(b) 0, 0; 0, 0,
0, 1/2 in P6;/m have the same symmetry 3, the
symmetry elements are similarly oriented, although
not the geometric units. These two space groups thus
have the same Cheshire group P6/mmm, with a cell
reduced to a xbx(1/2)c. Yet, they are classified
under types hl and h2 in Table 1.

The Cheshire groups of space groups with polar
axes such as 3, 4, 6 and 6mm are continuous groups
with Z-type lattices. Thus P6 and P6, have the same
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Cheshire group Z'6/ mmm, but they are classified in
types h1(b) and h2, respectively. The combined (AB)
geometric unit for P6 (Table 1) belongs to point group
6.., but the geometric unit in P6; belongs to point
group 3. Here is a case where two space groups
belonging to the same Cheshire group are placed in
different types when classified by geometric unit
owing to the fact that translation ¢/2 is not equivalent
in P6 to what it is in P6;. Note, however, that the
geometric units in P6,, contrary to those in P6;/m,
have no unique points to define their centers, and
these two space groups, although belonging to differ-
ent Cheshire groups, are placed in the same type in
the present treatment.

Geometric units are particularly useful for the
description of complicated structures such as those
cubic ones given by Chieh (1980, 1982). Atoms
belonging to the same Wyckoft positions form con-
centric polyhedra around the center of the geometric
unit. These polyhedra are listed in ascending order
of the distances of the atoms from the center. The
number of vertices of a polyhedron is given as a
subscript to the chemical symbol of the element
occupying those vertices. Atoms on the surfaces,
edges of vertices of the geometric unit are shared by
neighboring units; the number of units sharing an
atom is given as a divisor of that subscript. For
example, Eq ¢ represents a polyhedron with six ver-
tices, in which each atom is shared by six units.

The h.c.p. and related structures are not compli-
cated but their descriptions by geometric units may
serve as examples illustrating the method. These
structures (Pearson symbol hP2) belong to space
group P6;/mmc, which is in type h2 (Table 1). A
[001] period of these structures consists of two iden-
tical units rotated 60° apart. This space group has
four Wyckoff positions of multiplicity 2: 2(a) 3m.,
2(b)Y6m2, 2(c) 6m2 and 2(d) 6m2. Obviously, the
symmetry of the environment of atoms is not 3m. but
6m2. The origin chosen in International Tables for
Crystallography is on an (a) site, with symmetry 3m.,
which is the octahedral ‘hole’ of the closest packed
spheres. In this choice, the geometric units, represen-
ted for example by Mg, are the shared octahedra
whose vertices are occupied by atoms, and units A
and A’ share a face to give the proper orientation. If
one chooses 2(b) as the geometric unit centers, the
units would consist of shared equilateral triangles. In
this case, the unit should be represented by Mg, ;.
Unlike 2(a) and 2(b), one 2(c) site is above one 2(d)
site, the other 2(c¢) site is below a 2(d) site (¢ vector
pointing up). Therefore, they are not suitable centers
for geometric units. Either 2(c) or 2(d) are possible
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sites for atoms when a center of 3m. is chosen as the
origin. The reason why they are not suitable for
geometric unit centers can also be seen from the fact
that atoms are not directly one above each other,
whereas the centers of the triangles and those of
octahedral ‘holes’ are.

Both Wyckoff positions 2(a) and 2(b) of space
groups p3lc, P6; and P6;mc appear to have the same
(but unequivalent) site symmetry. For reasons as
given previously for the h.c.p. structures, only sites
2(a) are suitable for geometric unit centers in the
present scheme of classification.

The NiAs (hP4) structure is derived from the h.c.p.
structure, but only Ni atoms are located at' 3m. sym-
metry centers. For simplicity the location of Ni is
used as the origin; using the notation described above,
we may represent the geometric unit by NiAsg. As
examples for geometric units consisting of three and
four atoms B,,,sRes s and CCry,6Alg/s are used for
B,Re (hP6) and AICCr, (hP8), respectively. Knowing
the point-group symmetry to be 3m., it is easy to
construct such a geometric unit without having to use
coordinates. Thus the geometric unit concept may be
used to simplify the notation of structural data.

This work was supported by the Natural Sciences
and Engineering Research Council of Canada. The
author thanks Dr W. B. Pearson and an anonymous
referee for helpful suggestions.
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