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Abstract 
Hexagonal space groups, i.e. those with an hP lattice, 
are classified from the geometric-unit viewpoint by 
considering hexagonal crystal structures as combina- 
tions and permutations of some basic hexagonal 
prisms. Geometric units are the Dirichlet domains of 
the Wyckoff positions with the highest point-group 
symmetry in the space group. In this classification, 
there are six types of hexagonal space groups. Type 
hl consists of two independent geometric units of 
the same symmetry per crystallographic cell; in type 
h2, the two units are identical, but differently orien- 
ted. Type h3 has six independent geometric units, 
again of the same point-group symmetry, but the six 
units can be made up of three pairs, each consisting 
of two identical units, thus giving rise to type h4. 
There are subclasses in types hl and h3. Centers of 
geometric units in h l ( a )  and h3(a) are uniquely 
defined by intersections of point-group symmetry ele- 
ments, whereas those in hi(b)  and h3(b) are not 
because the space groups in these subtypes are hemi- 
morphic. Therefore, the two units along the polar axis 
may be combined as one. Type h5 consists of three 
units, each turned 120 ° from its neighbors owing to 
the screw axis 31, 32, 62 and 64. Similarly, type h6 has 
six units due to screw axes 61 and 65, and adjacent 
units are 60 ° apart. Rhombohedral space groups show 
two types of patterns: type rl has two independent, 
and type r2 two identical, units. The h.c.p, and related 
structures are used to demonstrate the application of 
geometric units to crystal-structure descriptions. 

Introduction 
A recurring problem in finding a model for the sol- 
ution of a crystal structure and its interpretation is 
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to identify some convenient units that, by easy sym- 
metry operations, will enable the construction of the 
entire structure. In this respect, asymmetric units, 
topological units (Wells, 1977), crystal chemical units, 
symmetry-related units (Kennard, Speakman & 
Donnay, 1967), building units (Lima-de-Faria & 
Figueiredo, 1976) and crystallographic cells have 
been used. For cubic crystal structures, Chieh (1979) 
suggested geometric units based on the construction 
of polyhedra, a proposal which differs from the pre- 
vious ones in that it deals mainly with the symmetrical 
distribution of the atoms in the structure, rather than 
their connectivity or framework. The classification 
and description of cubic space groups in terms of 
geometric units were later given by Chieh, Burzlaff 
& Zimmermann (1982). The concept of geometric 
units was extended to tetragonal space groups by 
Chieh (1983), and some advantages were pointed out. 

Applications of geometric units to cubic crystal 
structures have been given in previous publications 
(Chieh, 1980, 1982, 1983). Their application to the 
solution of a crystal structure and its subsequent 
interpretation was exemplified by the paper on anhy- 
drous zinc bromide (Chieh & White, 1984). The pres- 
ent paper deals with the hexagonal and rhombohedral 
space groups. 

Early work on the classification of cubic space 
groups by geometric units was somewhat intuitive. 
As more work on the theoretical aspects of space 
groups developed (see Gubler, 1982; Fischer & Koch, 
1983; Burzlatt & Zimmermann, 1980) it became 
apparent that the classification follows the results of 
Euclidean normalizers of space groups. The purpose 
of geometric units is to divide a crystal structure into 
polyhedral units that have the same shape, volume 
and point-group symmetry. 
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Dirichlet domains in hexagonal and 
rhombohedral lattices 

All hexagonal lattices are primitive hP, but when 
hexagonal coordinate axes are used for a rhombohe- 
dral lattice, the cell hR contains three lattice points. 
If the rhombohedral coordinates are used, the cell is 
primitive rP. In terms of geometric units, the rhom- 
bohedral lattice is different from the hexagonal one. 

In a rhombohedral  lattice the Dirichlet (1850) 
domains, which are sometimes referred to as Wigner- 
Seitz (1933) cells, have two shapes depending on the 
rhombohedral angle a, if we ignore the special cases 
of a = 60 and 90 °. Since geometric units are derived 
from the Dirichlet domains of Wyckoff sites of the 
highest symmetry in a space group, we shall explain 
the variation in shape of the Dirichlet polyhedron as 
the angle a varies. In the special case of a = 60 °, the 
' rhombohedral '  lattice is metrically a cubic F lattice. 
Therefore the Dirichlet domain has the shape of a 
rhombic dodecahedron. This well known polyhedron, 
which was mentioned by Chieh (1983), is also related 
to a special case of a tetragonal lattice. For 60 < a < 
90 °, the rhombic dodecahedron deforms along one 
of the threefold axes, as shown in Fig. l (a) .  For 
a = 90 °, the lattice is pseudo-cubic P and metrically 
the Dirichlet domain is a cube. For a > 90 °, the neigh- 
bor along the [111] axis becomes nearest, and the 
planes between the lattice points in this direction will 
take part in shaping the Dirichlet domain, as shown 
in Fig. l(b).  This polyhedron can be derived from 
the truncated octahedron by compressing it along a 
threefold axis. At the other extreme, for a = 120 °, the 
lattice is a hexagonal net. The Dirichlet domain for 
a hexagonal lattice is a hexagonal prism as shown in 
Fig. l(c). 

Geometric units in hexagonal and rhombohedral space 
groups 

The translations of any rhombohedral space group 
generate a site 1/2, 1/2, 1/2 (the body center of the 
rP cell), which has the same point-group symmetry 
as the origin. The same groups, referred to the hR 
cell, generate a site 0, 0, 1/2, which has the same 
symmetry as in the corresponding hexagonal space 
groups. Since there is no unique point in polar groups, 
an equivalent origin of this type does not stand out, 

but it is there. In space groups such as P312, P6, 
POre2 etc., sites 1/3, 2/3, 0 and 2/3, 1/3, 0 also have 
the same point-group symmetry as the origin, and 
these sites, together with those halfway along c, are 
very special Wyckoff positions whose Dirichlet 
domains may serve as convenient geometric units. 

The geometric units for hexagonal and rhombohe- 
dral space groups bear certain similarity to those of 
the tetragonal system. The analysis of the hexagonal 
space groups results in five categories (a, b, c, d and 
e in Fig. 2). For the (a) category, the Dirichlet domain 
of the hexagonal lattice is divided into two geometric 
units by a plane half way in the [001] direction. The 
units for the (c) category are similar to those of (a),  
but they have 1/3 of the volume of the Dirichlet 
domain of the lattice, and units in the (d) category 
have 1/6 of the volume (shortened along the c direc- 
tion). Units in the (b) category have 1/6 of the volume 
of the cell, as their area in the ab plane is 1/3 of the 
mesh (Fig. 3) in addition to the division of c by 2. 
In all categories, the overall shape of the geometric 
units remains as a hexagonal prism. In the rhombohe- 
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Fig. 2. Geometric units and packing patterns for hexagonal space 
groups (a, b, c and d) and rhombohedral space groups (e). 

(a) (b) (c) 

Fig. 1. Dirichlet domains for ~a) a rhombohedral lattice with 
a < 9 0  °, (b) a rhombohedral lattice 'with a > 9 0  °, and (c) a 
hexagonal lattice. 

b 

Fig. 3. Relationship between geometric unit in category (b) and 
crystallographic cell. 
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Table 1. Classification of hexagonal space groups by packing pattern of geometric units 

147 150 
P3 P321 
l ( a )  3.. I (a)  32. 
I(b) 3.. I(b) 32. 

157 
P31m 
l ( a )  3.rn 

159 163 
P31c P31c 
2(a) 3.. 2(b) 3.. 
m* m* 

149 
P312 
l (a )  3.2 
I(b) 3.2 
I(c) 3.2 
l(d) 3.2 
I(e) 3.2 
I (f) 3.2 

143 156 
P3 P3 m 1 
I (a)  3.. I (a)  3m. 
I(b) 3.. I(b) 3m. 
I(c) 3.. I(c) 3m. 

158 
P3cl 
2(a) 3.. 
2(b) 3.. 
2(c) 3.. 
m* 

144 145 
P3L P32 
3(a) I 3(a) I 

153 154 
P3212 P3221 
3(a) ..2 3(a) .2. 

Space-group number 
Space-group symbol 

W y c k o f f  p o s i t i o n s  as g e o m e t r i c  unit  center ,  s i te  s y m m e t r y  

162 164 175 177 
P31 m P~3rn I P6/ m P622 
I (a)  3.m l ( a )  3m. I (a)6/m. .  I (a)  622 
l (b)  3.m l (b)  3m. l (b)6/m. ,  l (b)  622 

168 183 
P6 P6mm 
l ( a )  6.. I(a)6mrn 

165 173 176 
P3 c I P63 P63/m 
2(b) 3.. 2(a) 3.. 2(b) 3.. 
m 6 6 

185 186 
P6scm P63mc 
2(a) 3.m 2(a) 3m. 
6 6 

193 194 
P63/mcm P63/mmc 
2(b) 3.m 2(a) 3m. 
6 6 

174 187 
P6 P6m2 
I (a)  6.. l ( a )  6m2 
I(b) 6.. I(b) 6rn2 
I(c) 6.. l (c)  6m2 
I(d)  6.. I (d)  6m2 
l(e)  6.. I(e) 6m2 
l ( f )  73.. l (J)  6rn2 

189 191 
P62 m P6/mmm 
I (a)62rn I (a)  6/mmm 
I ( b)52 m 6/mmm 

182 184 
P6322 P6cc 
2(a) 32. 2(a) 6.. 
6 m 
190 192 
P62c P6/ mcc 
2(a) 32. 2(b) 6/rn.. 
m* m 

188 
P6c2 
2(a) 3.2 or 2(b) ~,.. 
2(c) 3.2 2(d) 6.. 
2(e) 3.2 2(f) 6.. 
m* 

151 152 171 172 180 181 
P3 ~ 12 P3~21 P62 P64 P6222 P6~22 
3(a)..2 3(a) .2. 3(a) 2.. 3(a) 2.. 3(a) 222 3(a)222 

169 170 178 179 
P6~ P65 P6122 P6522 
6(a)  I 6(a) I 6(a)  .2. 6(a)  .2. 

Orientation notations 6, m, m* represent six-fold rotation axis, mirror perpendicular to a and mirror perpendicular to a*, respectively. In that order, 
the first one will be given in cases where all three or any two are present. Superscript to pattern letter A, in types h5 and h6, refers to number of 60 ° rotations. 

dral case (Fig. 2e), the units generally have the shape 
of a dodecahedron or distorted truncated octahedron, 
but in the special case where a = 90 °, the units are 
metric cubes. The units shown in the figure are cubes 
for clarity, but the packing is perhaps easier to under- 
stand if we use the hexagonal prisms in a staggered 
arrangement (shown in the inset). The transformation 
of shapes has been discussed in connection with the 
geometric units in the tetragonal system (Chieh, 
1983). All categories, except (c) and (d),  have two 
types. 

Classification of hexagonal and rhombohedral 
space groups by geometric units 

In the classification of hexagonal and rhombohedrai 
space groups (Tables I and 2), the symbols of Interna- 
tional Tables for Crystallography (1983) are used. The 
method of classification is similar to that applied to 
tetragonal space groups (Chieh, 1983). 

Like the tetragonal system, there are hemimorphic 
hexagonal space groups for which the origins are not 
uniquely defined because there are no symmetry axes 
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Table 2. Geometric units in rhombohedral space groups 

Space-group number  
Space-group symbol 

Type, no. of pattern Wyckoff positions as geometric unit 
unit, orientation center, site symmetry 
rl B 148 155 166 

A R3 R32 R3m 
A: I(a)  3. l (a)  32 l (a)  3m 
B" I(b) 3. l(b) 32 l(b) 3m 

r l (b)  146 160 
R3 R3m 

AB: l (a)  3. I(a) 3m 

r2 A' 161 167 
A R3c R3c 

A: 2(a) 3. 2(b)3 
': m* 6 

See note in Table I for meaning of symbols. 

intersecting at any point. The two units that could 
have been used for space groups that have a unique 
point as their origin may be combined along the [001] 
direction, and be considered as a single unit. These 
space groups are placed in subtypes h l(b) and h3(b) 
(Table 1 ). 

When units A and B are combined, they actually 
form a one-unit period in the [001] direction. For 
hexagonal space groups, the axes 6, 61 (65), 62 (64) 
and 63 give rise to the possibility of having one, six, 
three and two geometric units, respectively, in one 
[001] period. Type h5 has the sequence A A 2 A  4 (2 and 
4 refer to 62 and 64 operations), and all space groups 
in this type contain one of the screw axes 31, 32, 62, 
64. Space groups P6~, P65, P6122 and P6522 are 
classified under type h6, with six geometric units per 
cell, in a manner similar to that of type h5. The 
point-group symmetries of the geometric units are 1 
or .2. When the geometric unit has symmetry 1, it is 
also the asymmetric unit. Symmetry in the geometric 
unit reduces the volume of the asymmetric unit to 
I/2, 1/3, 1/6 or 1/12 that of the geometric unit. 

There are two independent units A and B for types 
h i ( a )  and h3(a) stacked in the [001] direction, 
whereas both units for space groups in types h2 and 
h4 are the same. They are differently oriented, and 
thus the representations such as A and A' are used. 
The prime indicates one of the fol!owing symmetry 
operations: repeated 60 ° rotations ( = 6 ''2 ........ ), reflec- 
tion in a mirror perpendicular to a (' -- m), and reflec- 
tion in a mirror perpendicular to a* ( '=  m*). 

Discussion 

A geometric unit in a crystal structure is a building 
block possessing point-group symmetry of the Wyck- 
off site which serves as its center. Such units in crystal 
structures usually consist of simple easily recogniz- 
able polyhedral arrangements of atoms, molecules or 
ions. There are common arrangements of these units 

for crystals of many space groups (see Table 1 for 
examples). Thus the analysis of geometric units for 
the abstract space groups is of fundamental import- 
ance for the study of relationships between crystal 
structures, especially in the aspect of symmetrical 
distribution of atoms. For ease of application, adja- 
cent units may be divided in such a way that they 
have bumps and craters fitting into each other, but 
the overall arrangement of the units remains the same. 

The classification, in which most geometric units 
have non-trivial crystallographic point-group sym- 
metry, shows that the description of space groups by 
geometric units is applicable not only to symmorphic 
groups (i.e. those generated by combining point 
groups with Bravais lattices), but also to nonsymmor- 
phic groups. In retrospect, had a type with four units 
in the [001 ] direction period been added to the classifi- 
cation of tetragonal space groups (Chieh, 1983), no 
geometric units in that system would have sections 
of screw axes 4, o r  4 3 . 

If oriented symbols such as 3m. and 3.m are used 
to differentiate symmetry directions, the descriptions 
using geometric-unit patterns for the space groups 
are unique, and there is a one-to-one correspondence 
between the descriptions and the space groups. The 
symbols used in this paper are those given by Donnay 
& Turrell (1974). They have been adopted by Interna- 
tional Tables for Crystallography (1983). Enantiomor- 
phic space groups with 61, 62 etc. are distinguished 
by the handed screws, these must be employed in 
order to distinguish their stacking patterns. Although 
symbols such as 6 -1 and 6 ~ could have been employed, 
no effort has been made to distinguish them at this 
point in time. 

Although the classification of space groups by 
geometric units follows the principle of Cheshire 
groups (Hirshfeld, 1968; Fischer & Koch, 1983), there 
is a minor difference in that the latter deals with only 
the symmetry elements whereas the former includes 
the metric geometric properties. Let us make a few 
comparisons between the classification of space 
groups by geometric units and that by Cheshire 
groups. In simple terms, the Cheshire group is the 
symmetry group of the symmetry elements of the 
space group. Two independent sites, such as l (a )  0, 
0, 0 and l(b) 0, 0, 1/2 in P6/m, are not equivalent 
from a geometry viewpoint but are equivalent from 
the symmetry viewpoint; both have point-group sym- 
metry 6/m. Similarly, equivalent sites 2(b) 0, 0; 0, 0, 
0, 1/2 in P63/m have the same symmetry 3, the 
symmetry elements are similarly oriented, although 
not the geometric units. These two space groups thus 
have the same Cheshire group P6/mmm,  with a cell 
reduced to a xb×(1 /2)c .  Yet, they are classified 
under types hl and h2 in Table 1. 

The Cheshire groups of space groups with polar 
axes such as 3, 4, 6 and 6mm are continuous groups 
with Z-type lattices. Thus P6 and P63 have the same 
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Cheshire group Z ~ 6 / m m m ,  but they are classified in 
types h l(b) and h2, respectively. The combined ( A B )  
geometric unit for P6 (Table 1) belongs to point group 
6.., but the geometric unit in P63 belongs to point 
group 3. Here is a case where two space groups 
belonging to the same Cheshire group are placed in 
different types when classified by geometric unit 
owing to the fact that translation c/2 is not equivalent 
in P6 to what it is in P63. Note, however, that the 
geometric units in P63, contrary to those in P63/m, 
have no unique points to define their centers, and 
these two space groups, although belonging to differ- 
ent Cheshire groups, are placed in the same type in 
the present treatment. 

Geometric units are particularly useful for the 
description of complicated structures such as those 
cubic ones given by Chieh (1980, 1982). Atoms 
belonging to the same Wyckoff positions form con- 
centric polyhedra around the center of the geometric 
unit. These polyhedra are listed in ascending order 
of the distances of the atoms from the center. The 
number of vertices of a polyhedron is given as a 
subscript to the chemical symbol of the element 
occupying those vertices. Atoms on the surfaces, 
edges of vertices of the geometric unit are shared by 
neighboring units; the number of units sharing an 
atom is given as a divisor of that subscript. For 
example, E6/6 represents a polyhedron with six ver- 
tices, in which each atom is shared by six units. 

The h.c.p, and related structures are not compli- 
cated but their descriptions by geometric units may 
serve as examples illustrating the method. These 
structures (Pearson symbol hP2) belong to space 
group P63/mmc,  which is in type h2 (Table 1). A 
[001] period of these structures consists of two iden- 
tical units rotated 60 ° apart. This space group h a s  
four Wyckoff positions of multiplicity 2: 2(a) 3m., 
2(b)C~m2, 2(c) 6m2 and 2(d) 6m2. Obviously, the 
symmetry of the environment of atoms is not 3 m. but 
6m2. The origin chosen in International Tables for  
Crystallography is on an (a) site, with symmetry 3m., 
which is the octahedral 'hole' of the closest packed 
spheres. In this choice, the geometric units, represen- 
ted for example by Mg6/6, are the shared octahedra 
whose vertices are occupied by atoms, and units A 
and A' share a face to give the proper orientation. If 
one chooses 2(b) as the geometric unit centers, the 
units would consist of shared equilateral triangles. In 
this case, the unit should be represented by Mg3/3. 
Unlike 2(a)  and 2(b), one 2(c) site is above one 2(d) 
site, the other 2(c) site is below a 2(d) site (c vector 
pointing up). Therefore, they are not suitable centers 
for geometric units. Either 2(c) or 2(d) are possible 

sites for atoms when a center of 3m. is chosen as the 
origin. The reason why they are not suitable for 
geometric unit centers can also be seen from the fact 
that atoms are not directly one above each other, 
whereas the centers of the triangles and those of 
octahedral 'holes' are. 

Both Wyckoff positions 2(a) and 2(b) of space 
groups p31 c, P63 and P63mc appear to have the same 
(but unequivalent) site symmetry. For reasons as 
given previously for the h.c.p, structures, only sites 
2(a) are suitable for geometric unit centers in the 
present scheme of classification. 

The NiAs (hP4) structure is derived from the h.c.p. 
structure, but only Ni atoms are located a t3m.  sym- 
metry centers. For simplicity the location of Ni is 
used as the origin; using the notation described above, 
we may represent the geometric unit by NiAs6/6. As 
examples for geometric units consisting of three and 
four atoms Bi2/6Re6/6 and CCrl2/6AI6/6 are used for 
B2Re (hP6) and AICCr2 (hPS), respectively. Knowing 
the point-group symmetry to be 3m., it is easy to 
construct such a geometric unit without having to use 
coordinates. Thus the geometric unit concept may be 
used to simplify the notation of structural data. 

This work was supported by the Natural Sciences 
and Engineering Research Council of Canada. The 
author thanks Dr W. B. Pearson and an anonymous 
referee for helpful suggestions. 

References 

BURZLAFF, H. & ZIMMERMANN, H. (1980). Z. Kristailogr. 153, 
151-179. 

CHIEH, C. (1979). Acta Cryst. A35, 946-952. 
CHIEH, C. (1980). Acta Cryst. A36, 819-826. 
CHIEH, C. (1982). Acta Cryst. A38, 346-349. 
CHIEH, C. (1983). Acta Cryst. A39, 415-421. 
CHIEH, C., BURZLAFE, H. G. & ZIMMERMANN, H. (1982). Acta 

Cryst. A38, 746-747. 
CHIEH, C. & WHITE, M.-A. (1984). Z. Kristailogr. In the press. 
D1RICHLET, P. G. L. (1850). J. Rein Angew. Math. 40, 209-227. 
DONNAY, J. D. H. & TURRELL, G. (1974). Chem. Phys. 6, 1-18. 
FISHER, W. & KOCH, E. (1983). Acta Cryst. A39, 907-915. 
GUBLER, M. (1982). Z. Kristallogr. 158, 1-26. 
HIRSHFELD, E. F. (1968). Acta Cryst. 24, 301-309. 
International Tables for Crystallography (1983). Voi. A. Dordrecht, 

Boston: Reidel. 
KENNARD, O., SPEAKMAN, J. C. & DONNAY, J. D. H. (1967). 

Acta Cryst. 22, 445-449. 
L1MA-DE-FARIA, J. & FIGUEIREDO, M. O. (1976). J. Solid State 

Chem. 16, 7-20. 
WELLS, A. F. (1977). Three-Dimensional Nets and Polyhedra. New 

York: Wiley. 
WIGNER, E. & SEITZ, F. (1933). Phys. Rev. 43, 804-810. 


